Introduction

Most modern computing systems are distributed in nature. A distributed computing system
consists of multiple autonomous processors, often heterogeneous, that do not share primary
memory, but cooperate by sending messages over a communication network in order to
achieve a common goal.

In the late 1980s middleware platforms were introduced to support distributed computing
systems. Middleware platforms run on heterogeneous operating systems and
communication systems, providing a homogeneous abstract view of the entire distributed
system. Most middleware systems like CORBA [OMGO2b] or Java RMI [Sun99b] are
invocation-based and thus follow a request/reply paradigm: a client requests a particular
service from a server by either sending a request message or performing a remote method
invocation (RMI) and then receives a reply in return.

The size and complexity of distributed systems have been increasing inexorably. With the
advent of the Internet, it became possible to build large-scale distributed systems because of
the existence of a global, packet-based communication infrastructure. This increase in
system scale results in systems with millions of nodes that need to communicate and
cooperate in order to achieve the common goal.

Traditional middleware work well in a network with a moderate number of clients and
servers, although they are inadequate for large-scale systems. This is mainly because the
request/reply paradigm only supports one-to-one communication where a single client
interacts with a single server. In contrast, large-scale systems benefit from many-to-many
communication since the client does not have to decide on the best communication partner.
Another problem is the tight-coupling of request/reply middleware: the method invocation is
synchronous forcing the client and server to couple at one particular point in time. Such a
behavior is clearly not desirable on the Internet because of the large number of potential



2 Chapter 1. Introduction

communication partners and the dynamic nature of the system with new clients joining and
servers failing.

Furthermore, the proliferation of execution platforms with technical features very different
and the democratization of networks, confront to execution contexts more variables:

- variations in the space, the large diversity of platforms covers a wide spectrum in
terms of available resources;

- variations in the time, the execution context of a system evolves during its execution
due to the availability of physical and logic resources, mobility, etc.;

- application requirements, a system can be used in situations which require different
operating modes, and by users with different expertise levels and with specific
needs.

This situation rends the system development more complex, because it is difficult to know at
the development time, the precise conditions in which the systems will be used. Even when
that is possible, these conditions will be induced to evolve due to unforeseeable reasons
during the system time life.

These increasingly diverse and dynamic contexts in which current systems are run impose
to adapt and to become more autonomous. The new systems must not only be able to be
adapted, but also to be able to adapt itself in an autonomous way to the many and various
execution contexts to which they will be confronted, and to the evolutions — increasingly
dynamic — of those.

An adaptation is a modification of a system in response to a change in its context. The
resulting system is better suited to perform its function in the new context. A system is
adaptable if it can be adapted by an external entity and a system is adaptive if it adapts
itself automatically and in an autonomous way.

Event-based communication has become a new paradigm for building large-scale distributed
systems built out of heterogeneous components, using terabytes of structured, semi-
structured or non-structured data and accessed by thousands of users. It provides
asynchronous, loosely-coupled and many-to-many communication, being scalable, and
providing a simple application programming model.

In event-based systems, events are the basic communication element. An event can be seen
as a notification that something of interest has occurred within the system. System
components act as either event consumers that express their interest in receiving certain
events in the form of an event subscription, or event producers that publish new events
which will be delivered to all interested consumers. The service that connects producers and
consumers is named event service. Therefore, an event service notifies to consumers about
produced events of interest.

Large-scale distributed systems call for event services that integrate event-information from
different sources under various or changing applications. Integration requires the notion of
composite events that are combinations of simpler events.



Chapter 1. Introduction 3

1.1 Event services

Event services implement (i) an event model, which describes the events that can occur in a
system, and (i1) an event management model, which describes the event management
functionalities.

Event management is based on the producer/consumer approach. Event-based system
components act as either event producers that publish new events, or event consumers that
subscribe to events by providing a specification of events of interest to them. Then,
consumers are notified of any event generated by a producer, which matches their interest.
The event management starts when the event is detected, and ends when it is notified.
Figure 1.1 shows the three phases of the event management.

PRODUCTION
_|_' NOTIFICATION

Figure 1.1 Event management

Detection is the process by which an event is recognized and associated to an occurrence
instant. Events can be observed by a process external to the producer or the producer
can explicitly signal its occurrence.

Production corresponds to the insertion process of a set of detected events in an event
history. Events are ordered with respect to other events and considering theirs
occurrence instants. Once ordered, events can be used to build composite events
combining the produced events with composition operators such as disjunction,
conjunction or sequence. Composite events are stamped and ordered too with respect
to a production instant which must be calculated considering the semantics of the
composition operators.

Notification is the process that notifies events to consumers. The event notification can be
done at specific instants with respect to their production instants and considering
temporal constraints. Events can be filtered too before being notified.

Event-based monitoring offers an approach for observing how distributed computing
systems behave. Specified primitive and composite events are monitored at arbitrary sites of
a distributed system. Detected events cause reactions, for example, notifying users, taking
some emergency measure or adaptive functions.



4 Chapter 1. Introduction

Hence, event-based infrastructures are well-adapted to programming not only large-scale
distributed systems, but also adaptive systems that require monitoring its functionality.

1.2 Problem statement

Current event services implementations either do not support integration or they are too
rigid and do not provide sufficient solutions. Therefore, it is necessary a service that flexibly
supports various and changing applications requirements and enables efficient integration
of information from various producers. It implies the event model extension to more flexible
and general models.

The extension of event models towards more flexible and general models imposes a
reflection in the semantics and the processing that is wanted to give to the events. This
implies the uncoupling of the event modeling and the application specification and, the
design of methods that allow the event type definition independently of the aspects that
concern their management (detection, production, notification). Therefore, the aspects
concerning the management must be characterized too.

Most of the event models offer the traditional operators of disjunction, conjunction and
sequence. The operators allow expressing the composition of events (primitive or composite)
to denote new event types. Event composition varies according to the different application
requirements, in other words, the semantics of composition operators and in the different
production policies.

Furthermore, each type of application needs to have different events types expressed like
regular expressions or like objects (messages). This verifies the need to have mechanisms
that allow to the personalization of (i) event types; (i1) the composition operators and their
associate semantics; and (ii1) the composition algorithm to produce composite events.

1.3 Objective and approach

The objective of this work is to specify an adaptable and extensible event management and
composition infrastructure for building adaptive systems. Framework infrastructures
provide more elaborated forms of adaptability and extensibility. Therefore, the proposed
infrastructure is an event-based framework which is suitable for designing and
implementing personalized event management and composition systems.

Frameworks separate commonalities from variability in an application domain. They are
implemented as skeletal groups of software modules that can be adapted for building
domain-specific applications. They provide reuse in the form of pre-programmed logic that
can be customized to specific needs in that application domain. Therefore, frameworks differ
from standard applications since they need to be instantiated.

Current software frameworks are usually implemented in object-oriented languages,
nevertheless, recent research on aspect-oriented frameworks is in progress. From an object-
oriented point of view, frameworks are described in terms of concrete and abstract classes
and a set of flexible points or hotspots that together collaborate for the overall software
implementation. Hotspots may have different implementation for each framework instance,
and are left incomplete until instantiation time. From an object-oriented point of view,



Chapter 1. Introduction 5

hotspots are usually implemented using abstract classes, template methods and interfaces.
The instantiation process consists of completing the framework hotspots in order to create a
fully functional application. Some hotspots may require compile-time instantiation (the
hotspot has to be configured before the application is running) while others may require
run-time instantiation (the missing information is completed only during run-time).

The use of frameworks can reduce the cost of developing an application by an order of
magnitude since it promotes the reuse of both design and code. Moreover, they have been
adopted in a large set of applications and, for being built upon existing object-oriented
programming languages and techniques, they can rely on existing extensibility and
polymorphism features from these languages. Because frameworks promote reuse, they can
be used to consolidate the domain knowledge acquired during earlier projects so it can be
reused in future projects to realize the application goal. Finally, frameworks also hide
internal application details, and provide a general domain model, allowing their users to
concentrate in customizing the hotspots for their particular needs, instead of being required
to understand all the aspects of the program.

A disadvantage of the frameworks is the high initial development cost, which requires a
thorough understanding of the domain being automated and the requirements. Hence, the
design and implementation of software frameworks is not a trivial task, a balance between
the number of features provided by the framework and the hotpots must be reached. An
ideal framework includes all common features of a domain and leaves all variability to be
implemented as extensions. If the framework includes too many features, it can become
complex and less flexible; whereas, if it omits common functionality, its generality gets
compromised and different applications will need to implement the missing functionality,
which may result in code replication.

The main requirements of a framework are:
Scalability

A standard requirement for any information dissemination system is scalability. Scalability
refers not only to the numbers of producers and consumers, and the numbers of notifications
and subscriptions, but also to the need to discard many of the assumptions made for local-
area networks, such as low latency, abundant bandwidth, homogeneous platforms,
continuous and reliable connectivity, and centralized control. The publish/subscribe
communication model is intrinsically scalable because publishers and subscribers are only
loosely-coupled, and the implementation of the event-based framework must take advantage
of this.

Expressiveness

The expressiveness determines how fine-grained the data model that is offered to producers
and consumers of events is. The level of expressiveness influences the algorithms used to
route and deliver notifications, and the extent to which those algorithms can be optimized.
High expressiveness, as in a content-based system, is desirable from a consumer point of
view. Nevertheless, as the expressiveness of the data model increases, so does the
complexity of the algorithms. Therefore, the expressiveness of the data model influences the



6 Chapter 1. Introduction

scalability of the implementation, and hence scalability and expressiveness are two
conflicting goals that must be traded off.

Manageability

An event-based framework in itself is a complex distributed system with many components.
Easy manageability of such a system is an important requirement, especially because any
large-scale system may substantially evolve over its lifetime. For instance, when new
system components are added to increase performance or availability, the event-based
framework has to adapt without significant amounts of human intervention. The
management effort can be reduced by making components as autonomous as possible. Self-
adapting systems can relieve the manager from many decisions and thus facilitate the task
of system management.

Reusability

The reusability of a framework is an important factor. The stable interfaces provided by
frameworks enhance reusability by defining generic components that can be reapplied to
create new applications. Framework reusability leverages the domain knowledge and prior
effort of experienced developers in order to avoid re-creating and re-validating common
solutions to recurring application requirements and software design challenges. Reuse of
framework components can yield substantial improvements in programmer productivity, as
well as enhance the quality, performance, reliability and interoperability of software.

Extensibility

Framework extensibility is essential to ensure timely customization of new application
services and features. The event-based framework should support the deployment of new
systems. A framework enhances extensibility by providing explicit hook methods that allow
applications to extend its stable interfaces. Hook methods systematically decouple the stable
interfaces and behaviors of an application domain from the variations required by
instantiations of an application in a particular context. Extensibility in an event-based
framework can be achieved with a modular design. The framework is partitioned into core
components that are always needed and a set of domain-specific extensions that provide
optional services.

Interoperability

Due the heterogeneity of large-scale systems, interoperability between different forms of
systems becomes an important requirement. To improve interoperability, an event-based
framework should be built on open standards that are platform- and language-independent.
For example, XML as a messaging format simplifies the translation between different
formats. The API exported by an event-based framework should include bindings to several
programming languages. This allows the distributed application programmer to choose the
most convenient language for the implementation of a client.



Chapter 1. Introduction 7

Reflection

Reflection was first introduced as a programming language concept for languages that can
reason about and act upon themselves. Features found in reflective systems should
therefore be part of any modern framework, enabling it to inspect and modify its own
components and their behavior. This helps the framework operate in dynamic
environments, where the application requirements and the underlying network properties,
such as resource availability and link connectivity, are constantly changing during the
lifetime of the system. Its architecture is usually component-based so that parts of the
framework can be replaced and reconfigured at runtime. Hence, reflective features in a
framework for large-scale systems are essential to cope with changes in the environment.

Therefore, any novel framework design, such as an event-based framework, should be
component-based and harness reflective techniques.

1.4 Document organization

The remainder of this document is organized as follows: chapter 2 presents the event
concepts that will enable the understanding of this document and to explore the way in
which an event can be modeled. Chapter 3 presents and describes event-based middleware
services. Chapter 4 presents the proposed framework for event management and
composition in order to build adaptive systems. It is defined as a middleware framework
which is suitable for designing and implementing personalized event-based systems. The
implementation of a personalized event-based system is presented in chapter 5. Finally, the
conclusions and perspectives of this work are presented in chapter 6.



