
2
Event models

An event is something that takes place, a happening or occurrence, and that is particularly
significant, interesting or unusual. In computing systems the notion of event has a major
importance since it provides a powerful abstraction making possible to model the dynamic
aspects of applications. Events can represent state changes in databases, signals in message
systems, changes of existing objects or the creation of new objects in object-oriented
systems, or real-world events such as the departure or arrival of vehicles.

This chapter presents the concept of event. Its objective is to give the definitions and
references that will enable the understanding of this document and to explore the way in
which an event can be modeled and used. The chapter is organized as follows: section 2.1
presents the concept of event type and occurrence. It also presents the concepts related to
these concepts: environment of production and event occurrence time. The concepts of
primitive and composite event are described in sections 2.2 and 2.3 respectively. Section 2.4
presents the event composition based on event algebra and event mining approaches. It also
discusses the aspects that influence the event composition within distributed systems.
Finally, section 2.5 concludes the chapter.

2.1 Event types and occurrences

From the point of view of computing, an event (i) represents significant facts produced
instantaneously in a system and (ii) it is an instantaneous effect of the termination of an
invocation of an operation on an object [RW97]. The first definition supposes that events
exist because there is interest in observing them. The second supposes that events represent
operations and, in consequence, their existence depends on that of a source.

10 Chapter 2. Event models

In our work we define an event e in terms of a source named producer in which the event
occurs, and of a consumer for which the event is significant. Events describe facts,
situations, observable in producers and significant for consumers.

Events are propagated from the producers to the consumers through an event-based
communication model. The event-based communication asynchronously interconnects
producers and consumers in a potentially distributed and heterogeneous environment. It
has recently become widely used for large-scale Internet services and mobile programming
environments. The event-based communication model allows event producers to
anonymously communicate events to a group of event consumers, ideally without knowledge
of the number and location of the event consumers.

Consumers may be interested in a subset of the potentially large number of events
propagated in a system. To receive events, event consumers have to subscribe to the events
they are interested in. Events are compared against the filters and are only delivered to
consumers that are interested in them.

Therefore, events have to be specified beforehand in order to be able to detect them at
runtime. The semantics of events determines what exactly events are, i.e. when and where
they occur, whereas the syntax of events determines how events are specified. The syntax of
events defines an event specification language, and the specification of an event determines
its structure.

The structure of the propagated events varies considerably depending on the model and the
application domain. Events can be seen like signals (read/write of a value) without any
general characterization, but also like situations described on an abstract way. Thus, events
are said to be either generic or typed . The information that describes a generic
event is a data blob without an expressive structure. Typed events provide a well-defined
and expressive data structure into which a wide variety of event types can be mapped.

2.1.1 Event type

An event type is an expression that characterizes a class of significant facts (events) and the
conditions in which these events occur. Through its type, the event identifies the nature of a
change occurred within a system. Changes of same nature are thus indicated by events with
a similar structure.

According to the complexity of the event model, the event types are represented as
sequences of strings [], regular expressions – patterns – [] or as
expressions of an event algebra. In certain models, the type itself contains implicitly the
contents of the message. Other models associate types of parameters through structures
from which the attributes are accessible by the consumers.

2.1.2 Event occurrence

In general, an event is an event type occurrence. Events are produced within time and they
are thus associated to a time point t(e) named event occurrence time. Hence, each event is
associated to a timestamp which indicates, at least, the event occurrence time.

Chapter 2. Event models 11

The granularity of time representation (day, hour, minute, second, etc.) is determined by the
system or application. Most event models and systems suppose that time line representation
corresponds to the Gregorian calendar time, and that it is possible to transform this
representation as an element of the discrete time domain having 0 (zero) as origin and ∞ as
maximum limit. Then, a time point (event occurrence time) belongs to this domain and it is
represented by a positive integer.

Besides the event occurrence time, event types can have other event parameters describing
the circumstances in which the event occurred. In active systems, the parameters of an
event are used to evaluate the condition and to execute the action of an ECA rule. Hence,
the event type establishes the information that an event transmits (e.g., the event
occurrence time). This information constitutes the event production environment.

In some event models [] the type name is the only information and there is not other
associated information. In other models an event type characterizes a production
environment, represented by a set of tuples of the form (variable, domain). In both cases, an
event type characterizes knowledge about the context in which it is produced. Then, an
event type determines not only one, but numerous occurrences of events which are
distinguished by their parameter values.

For many applications, supporting only atomic events is not adequate. In many real-life
applications there is a need for specifying and detecting more complex patterns of events.
Therefore, event types can be classified as primitive events that describe elementary facts,
and composite events that describe combinations of primitive and composite events.

Figure 2.1 Event classification

2.2 Primitive event type

A primitive event type represents an atomic and instantaneous predefined elementary
occurrence in a system, for example, the update of a structure, the creation of a process. In
the context of databases, primitive events are related to the data modification (e.g. the
insertion, deletion or modification of tuples), to the data retrieval, to the processing of
transactions (e.g. begin, commit or abort transactions) and to time (e.g. absolute points in
time, such as 11 November 2005, 08.00 pm, or relative points in time, such as 30 minutes
after event E occurred). Data modification, data retrieval and processing of transactions are
actions which have duration. Hence, primitive events can be signaled either before the
action starts or after the action ends. In an object-oriented context, a method execution is a
primitive event.

Primitive
Event

Event

0..*

1..*

Composite
Event

12 Chapter 2. Event models

Many event models classify the primitive event types according to the operations they
represent (databases, transactional, applicative). In our study, we classify the types with
respect to:

Operations executed on data: an operation executed on a structure, for example, a
relational table, an object. In relational systems this operation can correspond to an
insert/update/delete operation applied to one or more n-tuples. In object-based
systems, it can be a read/write operation of an object attribute.

Operations within processes: events can represent specific points of an execution. In
SGBD, the types can represent execution points of a transaction (before or after the
transaction delete/commit). In a workflow application, an event can represent the
beginning (end) of a task. The production of errors inside a process can be represented
by events.

User operations: an operation on a widget in an interactive interface, the connection of the
user to the network, correspond to events produced by a user.

Situations coming from the execution context: events can represent situations produced
out of a process: (i) specific points in time (clock), for example, it is 19:00 or 4 hours
after the production of an event; (ii) events concerning to the operating system, the
network, etc.

Therefore, a primitive event expression is a structure representing either operations
executed on data, operations within processes, user operations or situations coming from the
execution context. Thus, a specified primitive event expression determines a primitive event
type.

In this work we consider an interval-based semantics, therefore primitive events occur over a time
interval and are denoted by E[t1, t2] (where E is the event, t1 is the start interval of the event
and t2 is the end interval of the event). The start and the end interval of primitive events
are assumed to be the same (t1 = t 2). Hence, the semantic of primitive events is
straightforward: a primitive event occurs and its timestamp is allocated when the
occurrence is detected.

Primitive events have at least two parameters associated: an event identifier and the event
timestamp, nevertheless other parameters can be associated with them, e.g. the name of the
user that started the operation and, in the case of a method event, the parameters of the
method.

2.3 Composite event type

A composite event type represents patterns of events. The constituents of a composite event
may be primitive events, or composite events. From a structural point of view, a composite
event is a succession of events, named event components, among which are: an initiator, a
detector and a terminator event. The initiator of a composite event is the first event whose
occurrence starts the composite event. The detector is the event whose occurrence implies
the detection of the composite event. The terminator is the event that is responsible for
terminating the composite event and causes its production.

Chapter 2. Event models 13

A composite event E occurs over a time interval and it is detected at the point when its last
component event is detected. In some event models the occurrence and detection semantics
are not differentiated, which leads to some unintended semantics in terms of event
composition.

Therefore, considering an interval-based semantics, a composite event is defined by E[t1,t2]
where E is the composite event, t1 is the start time of the composite event occurrence and t2

is the end time of composite event occurrence (t1 is the starting time of the initiator
component event and t2 is the end time of the detector or terminator component event.

Occurrences of the component events of a composite event can be either overlapping or
disjoint. When the events are allowed to overlap, there are thirteen possible relationships
for their combination and they are shown in figure 2.2.

Figure 2.2 Overlapping event combinations

When events are not allowed to overlap, there are fewer combinations. This may be
meaningful for many applications where the same event should not participate in the
composition of more than one composite event, or only one of the overlapping events is of
interest. The possible combinations are shown in figure 2.3.

1

Start of the interval

End of the interval

Event E1 instance

Event E2 instances

2 3 4

5 6

7

8 9

10

11

12

13

equals

before after

finishes

finished-by

starts

starts-by

meets met-by

overlaps

contains

overlapped-by

during

14 Chapter 2. Event models

Figure 2.3 Disjoint event combinations

2.4 Event composition

Event composition is the process of creating composite events from the detected events.
Detected events are stored in an event history. The event history consists of all occurrences
of the defined events, including components of composite events. The event history begins
when the first event is detected and is ordered by the timestamps of the event instances.

Because the event history may last over many sessions and transactions, a persistent event
history is required if the signaling of a composite event, based on events that have occurred
during different application sessions or transactions, should be possible. Resources such as
memory and processor time are not unlimited and therefore can event history not be
maintained indefinitely, and hence must be pruned. Minimally, the event history contains
only occurrences that can still be used for event composition.

Composite events can be composed based on (i) an event composition algebra, where a
certain pattern of event occurrences matches the composite event description, i.e., its
component events have been produced, in a certain order and respecting the given
constraints described by the semantic of its event operators, (ii) event mining, where event
history is analyzed in search for trends and patterns from which composite events can be
derived.

2.4.1 Event composition algebra

Composite events can be composed based on a defined event composition algebra. Hence, a
composite event expression is defined recursively, as an event expression formed by using a
set of primitive event expressions, event operators and composite event expressions.

The composition of a composite event depends on the detection of its component events. The
composition process is supported by a composition mechanism. This maintains the structure
of a composite event and the desired order of component event occurrences within it. Each
time an event occurs, it is inserted into the mechanism. If the event contributes towards the
composition of some composite event, the new composition state is derived and the old one is
deleted. A certain final state indicates the completed composition of a composite event. If an
event contributes towards the composition of multiple composite events, rule priorities
determine the order of their evaluation. It is important that all events contributing towards
a composite event occur, and that they occur in the correct order. This order is determined
by the composite event expression and specifically by the event operators.

In current research projects, the composition mechanism is based on the evaluation of
abstractions such as finite state automata, petri nets, matching trees or graphs (section
2.4.1.4).

Chapter 2. Event models 15

2.4.1.1 Operators

The algebraic operators allow to express event composition for denote new event types.
Many event models that characterize composite events consider event operators such as
disjunction, conjunction and sequence. Others add the selection and negation operators.
Nevertheless, no classification of the operators is established, which would make it possible
to generalize the characteristics of the operators associated with the event type. In the
following paragraphs, we classify the event operators in: binary, selection and temporal
operators.

The events e1 and e2 used in the following definitions can be any primitive or composite
event; E1 and E2 refer to event types with E1 ≠ E2.

Binary operators

Binary operators derive a new composite event from two input events (primitive or
composite events). The following binary operators are distinguished in mostly event models:

− Disjunction: (E1|E2)
There are two possible semantics for the disjunction operator (|): exclusive-or and
inclusive-or. Exclusive-or means that the composite event (E1|E2) is initiated and
terminated by the occurrence of e1 ∈ E 1 or e2 ∈ E 2, whereas inclusive-or considers
both events if they occur “at the same time”. In centralized systems, no couple of
events can occur “at the same time” and hence, the disjunction operator always
corresponds to exclusive-or. In distributed systems, two events at different sites can
occur “at the same time” and hence, both exclusive-or and inclusive-or are
applicable.

(E1 | E2) e1 ∈ E1, e2 ∈ E2

⇒ e1[t1,t2] ∨ e2[t1,t2]
⇒ [t1,t2]

Figure 2.4 Disjunction operator

− Conjunction: (E1 , E2)
(E1 , E2) occurs if both e1 ∈ E1 and e2 ∈ E2 occur, regardless of their occurrence order.
Event occurrences e1 and e2 may be produced at the same or at different sites. The
event e1 is the event initiator of the composite event and the event e2 is its

e1

t1 t3

t2 t4

e2

E1 | E2

t1 t4

E1 | E2

Time

16 Chapter 2. Event models

terminator event, or vice versa. Event occurrences e1 and e2 can overlap or they can
be disjoint.

(E1 , E2) e1 ∈ E1, e2 ∈ E2

⇒ [t1,t2]
∃t,t’ (t1 ≤ t ≤ t2 ∧ t1 ≤ t’ ≤ t2 ∧ ((e1[t1,t] ∧ e2[t’,t2]) ∨ (e1[t’,t2] ∧ e2[t1,t])))

Figure 2.5 Conjunction operator

− Sequence: (E1 ; E2)
(E1 ; E 2) occurs when first e1 ∈ E 1 and e2 ∈ E2 afterwards occurs. The sequence
denotes that event e1 “happens before” event e2. This implies that the end time t of
event e1 is guaranteed to be lees than the start time t’ of event e2. However, the
semantics of “happens before” differs, depending of whether composite event is a
local or a global event. Therefore, although the syntax is the same for local and for
global events, the two cases have to be considered separately. The event e1 is the
event initiator of the composite event (E1 ; E2) and the event e2 is its detector and
terminator event.

(E1 ; E2) e1 ∈ E1, e2 ∈ E2

⇒ [t1,t2]
∃t,t’ (t1 ≤ t ≤ t’ ≤ t2 ∧ e1[t1,t] ∧ e2[t’,t2])

Figure 2.6 Sequence operator

− Concurrency: (E1 _ E2)
(E1 _ E2) occurs if both events e1 ∈ E1 and e2 ∈ E2 occur virtually “at the same time”.
This implies that this operator applied to two distinct events is only applicable in

e1

t1 t

t’ t2

e2

e1 ; e2

t1 t2

Time

e1

t1 t

t’ t2

e2

e1 , e2

t1 t2

Time

Chapter 2. Event models 17

global events; the events E1 and E2 occur at different sites and it is not possible to
establish an order between them.

(E1 _ E2) e1 ∈ E1, e2 ∈ E2

⇒ [t1,t2]

Figure 2.8 Concurrency operator

Selection operators

Selection operators allow searching production patterns of instances of an event type in the
event history. The selection E[i] defines the occurrence of the ith event e ∈ E of a sequence of
events of type E, i ∈ N. The following selection operators are distinguished in event models
such as SAMOS [] and NAOS []:

− First occurrence: (*E in I)
The event is produced after the first occurrence of an event e ∈ E in an interval I.
The event will not be produced by all the other occurrences of the event e in the
interval.

− History: (Times(n, E) in I)
An event is produced all the n occurrences of an event e ∈ E in a time interval I.

− Negation: (Not E in I)
With a limited interval, the event E is produced if any occurrence of an event is
produced in the time interval I. The negation _ defines a passive event; it means
that no e ∈ E occurs within an interval of time I.

− (occurred, holds)
Query an event history and verify whether an instance of an event type was
produced.

− (old, new)
Operators to access the content of events that represent updates. The production
environment contains the data value before and/or after the execution of the update.
Thus, old (new) allow accessing the value before (after) the update.

Temporal operators

e1

t1 t

t2

e2

e1 _ e2

t1 t2

Time

18 Chapter 2. Event models

Temporal event types are expressions that allow specifying a point in time. Temporal events
refer to:

− an absolute time value: for example, 2005/03/15(08:00:00),

− a time value relative to a reference point: for example, <event E> + 00:15 to
indicate fifteen minutes before the occurrence of an event of type E,

− a periodical time value: for example, 2005/*/*(23:00:00) to describe all the days of
the year 2005 at 23h.

2.4.1.2 Event parameters

When specifying composite events it may be necessary to impose further restrictions on the
possible combinations of primitive or composite events. Those event restrictions state
conditions on the event parameters, which must be fulfilled at runtime by the component
events of a composite event.

The parameters of a composite event are derived from the parameters of its component
events. Table 2.1 gives an overview of other parameters of composite events depending on
the binary event operators.

Composite event Other parameters

(E1 , E2) parameters of E1 and parameters of E2

(E1 | E2) exclusive-or
(E1 | E2) inclusive-or

parameters of E1 or parameters of E2

parameters of E1 and/or parameters of E2

(E1 ; E2) parameters of E1 and parameters of E2

(E1 _ E2) parameters of E1 and parameters of E2

Table 2.1 Parameters of composite events

2.4.1.3 Event consumption

When composing events, there may be several event occurrences which could satisfy a
composite event, for example, consider the composite event (E1 ; E 2) and three event
occurrences for E1: e11, e12 and e13. On the occurrence of e21, the event consumption must be
well-defined, namely, what E1-event(s) to combine with e21.

Event consumption is used to decide which component events from the event history are
considered for a composite event, and how event parameters of the composite event are
computed from its components. The event consumption modes are classified in the following
event contexts:

Recent: only the newest instance of the initiator event E is used in the composite event. In
the above example, the instance e11 of event E1 is the initiator of the composite event
(E1 ; E 2). If a new instance of event E1 is detected (e.g. e12), the older instance is

Chapter 2. Event models 19

overwritten by the newer instance. Then, the instance e21 of event E2 is combined with
the newest event occurrence available: (e13, e21). When the composite event has been
detected, all components of that event, that cannot be future initiators, are flushed
from the event history. This consumption mode is useful, e.g. in systems where there
is a high rate of sensor readings and it does not matter if some readings are lost.

Chronicle: for an event occurrence, the initiator, terminator pair is unique. The oldest
initiator and the oldest terminator for each event are coupled to form the composite
event. In the example, the instance e21 is combined with the oldest event E1 occurrence
available: (e11, e21). When the composite event has been detected, all constituents of
the composite event are flushed from the event history. This consumption mode is
used when there is a connection between events that has to be maintained.

Continuous: each initiator of a composite event starts the detection of that composite
event. The terminator event occurrence may then detect one or more occurrences of
the same composite event, i.e. the terminator terminates those composite events
where all the components have been detected (except for the terminator). In the
example, e21 is combined with all event E1 initiators: ((e11, e21)(e12, e21)(e13, e21)) and
does not delete the consumed events. The continuous consumption mode is different
from the recent and chronicle consumption modes in the way that with recent and
chronicle one initiator is coupled with one terminator, the continuous consumption
mode couples one terminator with one or many initiators. The major problem with this
consumption mode is that it produces combinations of events where some or all events
are of interest. This adds more overhead to the system and requires more storage
capacity.

Cumulative: all occurrences of an event type are accumulated as instances of that event
until the composite event is detected. In the example, e21 is combined with all event E1

occurrences available (e11, e12, e13, e21) and deletes the consumed events. When the
terminator has been detected, i.e. the composite event is detected; all the event
instances that make up the composite event are flushed from the event history.

2.4.1.4 Event composition approaches

The following approaches have been used for event composition:

Finite state automata: the automaton input is the set of primitive event components from
the corresponding composite event as they occur in the history. If the automaton enters an
accepting state after the input of a primitive event, then the composite event implemented
by the automaton is said to occur at the time of this primitive event. Automata are not
sufficient if binding predicates have to be supported. The automata have to be extended
with a data structure for storing the additional event information of the primitive events
from the time of their occurrence to the time at which the composite event is detected.

Petri nets: are used in several event-based systems to support the detection of complex
composite events. In a petri net created for a subscription regarding a composite event, the
input places refer to primitive events, and the output places model the composite event.
Each new subscription describing a composite event causes the creation of the appropriate
petri net. The incremental detection of composite events is described by the position of the
tokens in the petri net. The firing of the transition depends on the input tokens and the

20 Chapter 2. Event models

positive evaluation of the transition guards. The occurrence of the composite event is
signaled as soon as the last element of a given sequence order is marked.

Matching trees: are constructed from subscriptions describing composite event structures.
The primitive event parts are the leaves of the matching tree, composites are the parent
nodes in the tree hierarchy. Parent nodes are responsible for maintaining information for
matched events, such as mapping of event variables and successfully matching event
instances. This information is updated by child nodes on every match and is passed to the
parent nodes. Parent nodes perform further detection. A composite event is detected if the
root node is reached and the respective event data are successfully filtered in the root node.
Then, context-related information and additional information is passed to the notification
component.

Graphs: each composite event is represented by a directed acyclic graph (DAG), where
nodes are event descriptions and edges represent event composition. Nodes are marked with
references to respective event occurrences. After event detection, parent nodes are informed
and checked for consumption recursively. References to events are stored until consumption
is possible. In addition to event composition edges, nodes are accompanied by rule objects
that are fired after the corresponding event occurred.

In order to visualize composite events and consumption modes time graphs can be used.
Time graphs have the following notation and semantics:

• A timeline, which represents the event history. Each instance of an event is marked
on the time line in order of occurrence.

• One or more time intervals, over which the composite events are detected. Each
interval represents the detection of a composite event for a given consumption mode.
The interval includes one initiator, one terminator, and zero or more events
participating in the composite event.

The instance of an event Ex will be denoted as exy, where x is the event type and y is the
relative occurrence of event x. In other words, e12 is the second occurrence of event E1.

To show what time graphs look like, and how the different consumption modes work, the
following example will be used. The example includes three primitive events, E1, E2, and E3,
and event history H. The event history has the following event instances:

H = {{e11}, {e12}, {e21}, {e31}, {e22}, {e41}, {e32}, {e42}}

There are two composite events used: E5 and E6. Event E5 is defined as a conjunction of E1

and E2 (E5 = (E1 , E2)). Event E6 is defined as a sequence of E5 and E3, (E6 = (E5 ; E3) = ((E1 ,
E2) ; E3)).

Figure 2.9 shows how the composite event E6 is visualized in different consumption modes
using time graphs. At the top there is a timeline where all the event instances that are
detected are shown in the order they were detected. If an event instance is used in a
composite event, a new event instance symbol (a rectangle) is created. This symbol is placed
directly below the event instance on the timeline. The event instance rectangle is unfilled
(white) if the event instance is an initiator to the composite event, black if the event

Chapter 2. Event models 21

instance is a terminator to the composite event, and gray if the event is just a participating
event in the composite event. In figure 2.9, the composite event E6 is visualized in the four
different consumption modes. As can be seen in figure 2.9, two instances of the composite
event E6 are detected when the recent, chronicle, and continuous consumption modes are
used, but only one instance is detected when the cumulative consumption mode is used.

Figure 2.9 Composite event E6 visualized using time graphs.

Time graphs explicitly show the difference between initiator, terminator and other
participating events in the detection of the composite event by using different colors. On the
other hand, time graphs do not contain information about the structure of the composite
event, e.g. the event operators.

Using event graphs is another way of visualizing composite events and consumption modes
in an event-based system. The semantics of an event graph is as follows:

• A timeline, which represents the event history. Each instance of an event is marked
on the timeline in order of occurrence.

• One or more nodes. Each node represents an event operator.
• Leaves. Each leave represents a primitive event.
• Arcs. Each arc represents a connection between a node and its two children (leaves

or nodes).

To show what event graphs look like, the same example as the one used to show what time
graphs look like will be used. Figure 2.10 shows the detection of the composite event
visualized using event graphs. There is a timeline where all the event instances that are

Recent

Chronicle

Continuous

Cumulative

11 12 21 31 22 41 32 42

Time

1.

2.

1.

2.

1.

2.

1.

Initiator
Participating primitive
event in the detection
of X

Terminator
Time interval over
which X is
detected

22 Chapter 2. Event models

detected are shown in the order they were detected. When a composite event is detected, a
new node is created. Each side of the node is labeled with event instances that are used to
compose events, and inside the node is the operator that is used. Arcs connect the node to its
two children.

Figure 2.10 Composite event E6 visualized using event graphs.

With event graphs it is possible to see the operators of the composite event. This is not the
case with time graphs.

2.4.2 Event mining

Data mining, also known as Knowledge-Discovery in databases (KDD) is the practice of
automatically analyzing large stores of data for patterns and then summarizing them as
useful information. Data mining is sometimes defined as the process of navigating through
the data and trying to find out patterns and finally establishing all relevant relationships.

Consequently, event mining delivers knowledge in real-time about a complex system based
on events that denote the system’s activities. Then, event mining goal is to identify all
patterns of different types of recorded events which potentially indicate the production of an
event. Event mining adopts data mining techniques for the recognition of event patterns:

Association: searching and identifying patterns such that one event is connected to
another event.

Sequence or path analysis: searching and identifying patterns wherein one event leads to
another later event.

Classification: searching and identifying new patterns.

11 12 21 31 22 41 32 42

Time

AND

SEQ

E2E1

E3

E5

E6

e12 e21 e31

e21e12

e12 e21 e31

Chapter 2. Event models 23

Clustering: finding and visually documenting groups of events not previously known.

Forecasting: discovering patterns in data that can lead to reasonable predictions about the
future.

Then, events can be mined in a multitude of ways: unwanted events are filtered out,
patterns of logically corresponding events are aggregated into one new composite event,
repetitive events are counted and aggregated into a new primitive event with a count of how
often the original event occurred, etc.

Finding frequent patterns in a long temporal event sequence is a major task of temporal
event mining with many applications. A temporal event sequence can be formed by
integrating data sets from different domains according to common features such as the time
order of each event. Then, types of events recorded have one common reference point – the
recorded time of event occurrence. Consequently, a temporal event sequence is formed by
ordering timestamps of these events.

The goal of long temporal event sequence mining can be generalized as follows. Let k types
of time-related be given. A temporal event sequence is a list of events indexed by timestamp
reflecting the time when the event was recorded. Let e be a selected event type called target
event. Additionally, let time interval T be given. The goal is to find all frequent event
patterns (from de event sequence) which potentially lead to the occurrence of the target
event e within the given time interval T. Such kind of patterns is called event-oriented
pattern because it has temporal relationship with the target event.

2.4.3 Distributed aspects

The composition of events from different sources requires information about occurrence
times and order of events. Several aspects influence this information: the observation
method, the timestamping method, the time system and the observer strategy.

The system-wide composite events are called global composite events, as opposed to local
composite events which relate to event occurrence at a single site. Each global composite
event is monitored at one specific observer site which contains a global event detector. The
main implication of the special characteristics of distributed systems on global composite
event detection is:

In general, the order in which events are signaled at global event detector does not
correspond to the order in which the events occurred.

The concept of order of events within a single process changes fundamentally when
considering events in distributed systems. In a distributed environment, a set of distinct
processes communicates by exchanging messages, the message delay is not negligible
compared to the time between events in a single process. Furthermore, messages can outrun
each other (message overtaking). Hence, it is difficult or even impossible to determine which
one of two events occurred first.

24 Chapter 2. Event models

The detection of global composite events must be based on the occurrence time of
components events. However, the second implication of special characteristics of distributed
systems on global composite event detection is:

Occurrence time parameters originating at different sites are inaccurate.

This implication represents a further complication for the detection of global composite
events.

It is convenient to distinguish local and global event expressions. Since, all component
events of a local event occur at the same site, the special characteristics of distributed
systems do not have any influence on the semantics and the detection of local events.

A local (composite) event expression is a composite event expression whose component event
expressions relate solely to one site. All primitive event expressions are local event
expressions.

A global (composite) event expression is a composite event expression whose component
event expressions relate to more than one site.

Hence, for primitive event, the occurrence time corresponds to the time of the local clock just
after event detection. For composite events, the occurrence time is derived from the start
and end times of occurrence of the component events participating in that occurrence.

Therefore, for the detection of composite events in a distributed system of event sources and
event observers, the following information is needed: the local (partial) order of events on
the same network site, the total (global) order of events, and the real occurrence times of
events. If this information is not available or inaccurate, the consumers can be notified
about false events or events may be missed.

2.5 Conclusion

In this chapter the event concepts were presented in order to understand the document and
to explore the way in which events can be modeled. Primitive and composite event are
defined like fundamental parts of an event-based system where event composition is
required. The event composition was presented under two strategies: event composition
algebra and event mining. The realized study about event models allowed us to take into
account certain considerations for the event modeling and management, mainly in terms of
event composition.

