
4
Event management

and composition framework

This chapter presents the proposed framework for event management and composition in
order to build adaptive systems. It is defined as a middleware framework which is suitable
for designing and implementing specialized event-based systems.

The framework is component-based due component-based approach allows that parts of the
service can be reconfigured at runtime. The instantiation of the framework produces a
particular event-based system that ensures event-based communication. The framework is
defined around flexible and general models, each of which focuses on a different domain of
concern in the design.

The chapter is organized as follows: section 4.1 presents the general architecture of the
proposed framework and describes its components and the interaction among them. Section
4.2 presents the models for event management and composition that the framework
implements. Section 4.3 presents the functionality of an event service. Finally, section 4.4
concludes the chapter.

4.1 General architecture

Figure 4.1 presents the general component-based architecture of the framework that we
propose. The framework implements components for the event observation, filtering and
notification. The framework defines configuration components to personalize (i) event types,
(ii) composition operators and their associated semantics, and (iii) the composition
algorithm. Thus, the framework is instantiated and configured at run time with the
requirements of a particular application.

36 Chapter 4. Event management and composition framework

Figure 4.1 Framework architecture

The components for event management and composition that the framework implements
are described in the following sections:

4.1.1 Observer

The observer detects events as operations of objects of interest. We consider that objects of
interest are information objects that are located at the producer site, optionally in an object
repository. Information objects can be persistent (e.g. documents) or transient (e.g.
measured values). Objects are described by attributes. Each attribute has a domain that
defines the possible attribute values. Objects have a state, which is given by the value of its
attributes and can also be composed of other objects (hierarchy of information objects).

Changes of these objects (creation, update, deletion) are called operations and are induced
by an invoker. An operation may be invoked directly through some apparatus associated
with the object, or it may be invoked indirectly as a result of executing some program or
software tool.

EVENT
HISTORY

OBSERVER

COMPOSITION

MANAGEMENT

CONFIGURATION

NOTIFIER

SUBSCRIPTION
REPOSITORY

EVENT
TYPE

OPERATOR
COMPOSITION
ALGORITHM

NOTIFICATION
POLICIES

OBSERVATION
POLICIES

NOTIFICATION
BUFFER

EVENT
REPOSITORY

FILTER

Chapter 4. Event management and composition framework 37

Therefore, the operation detection is an active task of the observer (performed according to a
schedule) if the producer does not inform it about operations. We consider that any
operation is an event. Then, the observer creates an event type to each operation and
finally, the observer reports events as event messages to the filter. Then, the observer
implements event and time models for the event detection and production.

Not all event producers implement an observer, therefore an event service that covers these
types of producers implement an observer as a wrapper for each producer. Alternatively, the
observer can be moved to the producer site and perform its tasks as an agent of the service
there. How events are observed is described by the observation policies associated with the
observation model.

4.1.2 Filter

Detected primitive events are stored in the event history. The event history consists of all
occurrences of the defined events, including components of composite events. The event
history begins when the fist event is detected and is ordered by the event timestamps.

The filter has knowledge of the consumer subscriptions (subscription repository) and
compares the detected events with the subscriptions. The detection of composite events is
supported by the composition algorithm. The composition of a composite event builds upon
the detection of its component events. If a detected event contributes toward the
composition of some composite event a new composition state is derived and the old one is
deleted. A final state indicates the completed composition of a composite event. If an event
contributes toward the composition of multiple composite events, rule priorities can be used
which determine the order or their evaluation.

If a subscription and an event match the filter creates an event message and delivers it to
the notifier. Therefore, the filter implements the event model to create event messages.

4.1.3 Notifier

The notifier checks the schedule part of the subscription. If immediate delivery is
demanded, the event message is converted according to the format specified by the
consumer and delivered. Otherwise, it is buffered until the notifications become due. How
events are notified is described by the notification policies associated with the notification
model.

4.2 Models for event management and composition

In this section we look at the framework models that represent event management and
composition strategies that can be implemented by the components of an event system. The
design models are as follows: the data handled in the event-based framework is described by
an event model. The subscription model describes how consumers express interest in
occurrences of events. Communication issues of the framework are part of the observation
and notification models. The time model is concerned with the causal and temporal relations
among events.

38 Chapter 4. Event management and composition framework

4.2.1 Event model

The event model describes the representation and characteristics of the events. An event
can be uniquely characterized by the identity of the object of interest involved in the event,
the identity of the operation, the identity of the invoker, and the time of occurrence of the
event.

The event model proposed in this work considers primitive and composite events (figure
4.2). We further distinguish two categories of primitive events: time events and content
events. Time events represent the passage of time – the events refer to certain points in
time. They do not consider a certain object but rather a logical abstraction, e.g., of a global
clock. Time events may involve clock times, dates, and time intervals.

Content events involve changes of non-temporal objects, such as sensors. We additionally
distinguish active and passive content events. Active content events are state transitions of
an information object at a particular time; they are observer independent. The state of a
particular information object is described by the attribute values of the object. A state
transition occurs if at least one of the attributes values is changed.

Passive content events model the fact that for a given time interval an object did not
change. The subscription “notify if the sensor did not send data for more than thirty minutes”
refers to passive events. Passive events are content events as well as composite events and
they have to be observed.

Figure 4.2 Event model

Events may be reported by means of event messages. In a message, an event may be
described by a collection of (attribute; value) pairs, such as the three pairs in the following
example. The event message reports the crossing of a temperature threshold at a sensor:

eroom : event(temperature = 35 °C,
room = 150,
timestamp = 10 : 00 : 00)

Primitive
Event

Composite
Event

Event

0..*

1..*

Content
Event

Active Passive

Time
Event

0..*

1..*

Chapter 4. Event management and composition framework 39

A consequence of this model is that there is a one-to-one correspondence between operation
invocations and event occurrences. However, not every event will result in an observation of
the event, and not every observation will result in a notification being communicated to
some consumer. An event is simply a phenomenon that occurs regardless of whether or not
it is observed.

Another consequence of this model is that events corresponding to the initiation of operation
invocations are not associated with the object of interest. Such events are associated instead
with the invoker.

4.2.2 Subscription model

The subscription model describes consumers interest in occurrences of events. Consumers
describe the events in which they are interested as subscriptions. Hence, detected events
are filtered according to the consumer subscriptions.

Subscriptions consist of two parts: the description of the events (query subscription) and
additional information about the consumer and the conditions for notification (parameter
subscription). The filter evaluates the query subscription periodically against the occurred
events.

The model considers primitive and composite subscriptions (figure 4.3). Primitive
subscriptions consist of predicates on (attribute; value) pairs. An example subscription is:

stemp = subscription(temperature > 30° C)

Composite subscriptions may be unary or binary subscriptions referring to unary or binary
event operators respectively.

Figure 4.3 Subscription model

4.2.3 Observation and notification model

Composite
Subscription

Subscription

Primitive
Subscription

Binary
Subscription

Unary
Subscription

Negation Selection

Conjunction Sequence

ConcurrencyDisjunction

40 Chapter 4. Event management and composition framework

The observation model defines the way event occurrences are observed for the purpose of
notifying interested consumers. The model defines how events are requested and observed.

The notification model is concerned with the way the events are delivered to the
subscribers. A notification is a message reporting about events. Consumers are notified
according to the schedules given in their parameter subscriptions.

The observation and notification models adopt communication strategies to observe and
notify events.

Communication strategies

Events have to be observed at producer sites and notifications are sent to consumers. For
the external communication of event services, two connections are considered: producer-
service communication and service-consumer communication. We describe the producer-
service communication whose principle can be applied for the service-consumer
communication. We distinguish passive/active observations that use a communication mode
synchronous/asynchronous to the event occurrence. Table 4.1 shows the combinations of the
observations and communication modes.

Observation Mode Initiator
passive
passive
active
active

synchronous
asynchronous
synchronous
asynchronous

invoker or information object
separate observer on producer site
observer (triggered by event occurrence)
observer component of the service

Table 4.1 Communication strategies

Passive synchronous observation can be initiated by the invoker or the information object.
The invoker changes the information object and synchronously announces the state change
to the observer (figure 4.4(a)).

Figure 4.4 Passive synchronous observation

change()

INVOKER OBJECT OF
INTEREST OBSERVER CONSUMER

announce()

notify()

(a) Initiated by invoker

notify()

change()

announce()

INVOKER OBJECT OF
INTEREST

OBSERVER CONSUMER

(b) Initiated by information object

Chapter 4. Event management and composition framework 41

Passive synchronous observation can also be initiated by the information object. The object
itself announces its state change to an observer (figure 4.4(b)). Both forms are facets of a
single strategy, because both object and invoker reside on the producer site. For passive
asynchronous observation, the producer employs an observer of events on its site, which
asynchronously reports the events to the service.

In active synchronous observation the service observer is triggered by the event occurrence.
This triggering is already a synchronous (passive) observation in itself. Then, the observer
performs a more detailed observation than the triggering can provide. In active
asynchronous observation the invoker changes the information object, the observer verifies
the object state on a regular or irregular basis. The state change is detected by the observer
after a certain delay (figure 4.5).

Figure 4.5 Active asynchronous observation initiated by observer

The communication strategies passive observation and active observation are often referred
to as push and pull. In the push model, the producer informs the event service about events.
In the pull model, the event service observes events at producer sites.

4.2.4 Time model

The time model is concerned with the causal and temporal relations between events. The
most elemental concept concerning to time is the time line. This concept is particularly
significant because events occur in a time line. The characteristics of this line make it
possible to adopt particular algorithms of scheduling, but also to specify temporal relations
between these events.

A granularity is a partition of a time line in called convex subsets grains. The partitions in
weeks, month and years correspond to granularities. The granularity obtained by dividing a
time line is called minimal granularity.

The set of granularities on the same time line is structured in a hierarchy according to the
relation of a partial order finer than which makes it possible to say for example than the
granularity second and more fine that hours. The interest of this relation is to allow
conversions between grains belonging to various granularities. Two types of functions can
be defined:

notify()

change()

getState()

INVOKER OBJECT OF
INTEREST

OBSERVER CONSUMER

42 Chapter 4. Event management and composition framework

• approximation makes it possible to approximate a grain of one granularity G1

through G2 grain which contains it (zoom in).
• expansion makes it possible to associate a set of G1 grains to each grain of a

granularity G2 (zoom out).

According to granularities concerned, these functions are more or less complex. By the
granularity concept, a set of types is identified which intervene directly in the definition of
events:

• An instant is a point in a time line which can be represented by an integer when a
discrete time representation is adopted.

• A duration is a number of grains used like measure of the distance between two
instants to allow the expression of displacements in time compared to a given
instant. In general, it is characterized by a positive integer and by a granularity,
e.g.: 8 seconds.

• An interval is represented by two instants, or by an instant and a duration.
Considering that the lower and higher limits of an interval have the same
granularity, the interval can be represented by a granularity and two positive
integers.

In this work we consider an interval-based semantics, therefore events occur over a time interval
and are denoted by E[t1, t2] where E is the event, t1 is the start time of the event and t2 is the
end time of the event. The start and the end times of primitive events are assumed to be the
same (t1 = t2).

4.3 Event management and composition service

Figure 4.6 present the functionality of an event management and composition service for a
personalized event-based system. Events are caused by invokers that perform actions on the
information objects (objects of interest). An observer may learn of events in two ways: either
an observer is notified by the invoker, or the observer proceeds according to a time schedule.
The observer creates a message reporting the occurrence of the event and forwards it to the
filter.

The filter evaluates the subscriptions at the stored events. The possible combinations of
events have to be evaluated according event algebra or data mining techniques. Finally,
when an event matches a certain subscription, the filter forwards the event message to the
notifier. Notifications for the consumers may be buffered, checked for duplicates, merged,
and delivered according to the consumer subscriptions.

Chapter 4. Event management and composition framework 43

Figure 4.6 Event service functionality

The event processing (figure 4.7) that the event management and composition service
implements is described as following: let t(e) be the occurrence time of an event e. The
observer is notified by the invoker at time tobs ≥ t(e). A composite event is indicated in figure
4.7 by the horizontal bar at the filter, which combines two events. Depending on its
schedule, the notifier sends the message to the interested consumers at time tnot.

EVENT
HISTORY

OBSERVER NOTIFIER

SUBSCRIPTION
REPOSITORY

NOTIFICATION
BUFFER

EVENT
REPOSITORY

FILTER

PRODUCER A

CONSUMER A

INVOKER

notify

Object
repository

create
delete
update

Information
object

PRODUCER B

INVOKER

Object
repository

Information
object

detect
changes

create

send
message

store compare

send
message

notify

store

create

EVENT
SERVICE

CONSUMER B

request
notifications

EVENT-BASED SYSTEM

44 Chapter 4. Event management and composition framework

Figure 4.7 Event processing

4.3.1 Primitive event filtering

Three basic filtering approaches can be distinguished: naive filtering, clustered filtering, and
treebased filtering. The basic unit for event filtering is the time to filter one event attribute
value against one subscription predicate. In the naive approach, all subscriptions are tested
successively. In the clustered approach, the predicates are clustered according to the
operators used. Then, the most selective predicates are tested first. In that way, similar
predicates can be matched faster. For the tree-based approach, the predicates are ordered in
a subscription tree according to the attributes they refer to. For each attribute, a selection of
predicates has to be tested using binary search. The tree-based filter algorithms show the
best performance results. The basic algorithm, which uses sequential search at each node, is
shown in algorithm 4.1.

Algorithm 4.1 Tree-based algorithm: sequential tree-search for single matching path
input: subscription tree with attribute levels a1...an and branches b1...bm

event-message with (attribute; value) pairs
output: list of matching subscriptions or NULL

1: current-node := root /* root = a1 */
2: while (current-node <> leaf-node) do
3: branch-to-follow := NULL
4: iterate sequentially through branches i ∈ [1,m]
5: if branch predicate at bi true for event-message
6: then branch-to-follow := bi

7: if (branch-to-follow <> NULL)
8 then follow the branch to the next node: current-node := branch-to-follow _ ai+j

9: else EXIT
10: output current-node

time

Object
of interest

Observer

Filter

Notifier

Notifications
forwarded to
the consumers

t(e)

tobs

tnot

Chapter 4. Event management and composition framework 45

4.3.2 Composite event filtering

Existing composite-event filtering approaches (see section 2.4.1.4) have in common that two
steps are necessary to identify composite events: (i) the detection of primitive events, and (ii)
the evaluation of the composite events. Thus, the composite event is detected in a separate
step after the filtering of primitive events. These two-step methods contain unnecessary
filter operations.

Therefore, we adopt a method for the filtering of composite events that integrates the
detection of composite events into the detection of primitive events: after the filtering of a
primitive event, its contribution to a composite event is tested. In that way, the composite
event is detected successively. No additional step is required for the identification of the
composite event after the last contributing primitive event has been detected. The
identification of the composite event is accelerated and the overall filtering time is reduced.

For illustration, consider the following three example subscriptions:

Consumer A: EA = E1 (subscription regarding primitive events)
Consumer B: EB = (E1 ; E2) (subscription regarding composite events)
Consumer C: EC = E2 (subscription regarding primitive events)

Figure 4.8 shows the principle of composite event detection in two steps for these three
subscriptions. The triangle represents the primitive subscription pool. The primitive
subscription pool represents a structure for indexing and filtering primitive subscriptions.
In the two-step method, the pool contains all subscriptions regarding primitive events.

Each incoming primitive event has to be filtered against all subscriptions in that pool.
Consumers with subscriptions regarding primitive events (i.e., consumers A and C) are
notified after the detection of these events. This detection of the primitive events is the first
step in the event detection mechanism.

The results of the primitive filtering serve as input for the composite filtering (figures 4.8(a)
and 4.8(b)). The subscriptions regarding composites are stored in the composite pool,
represented by the square in figure 4.8. The incoming primitive events are assigned to the
composite subscriptions. If all contributing events for a certain composite did occur, the
composite event is signaled to the interested clients (client B in figure 4.8(c)). If the time
span between the primitive events is larger than T, the composite subscription is not
matched, and the detected primitive events are dismissed.

46 Chapter 4. Event management and composition framework

Figure 4.8 Composite- event detection using two-step methods

Figure 4.9 shows the principle of the single-step detection algorithm. The primitive event
pool and a temporal pool are required, the composite pool is not used. After the detection of
a primitive event, the interested clients are notified (consumer A in figure 4.9(a)). For
storing the information about composite subscriptions, auxiliary subscriptions are created.
After the match of a contributing primitive event, an internal notification regarding the
auxiliary subscription is created. This notification triggers the insertion of the remaining
composite part into the primitive subscription pool. Consider the auxiliary subscription for
the composite subscription of consumer B: an internal auxiliary client is notified about the
occurrence of the partial composite event (figure 4.9(a)). The auxiliary subscriptions for the
internal client carry the information about the composite subscription as well as the
information about its partial evaluation.

In figure 4.9(b), after the detection of event e1, the subscription for event e2 has been
inserted into the pool. For the observation of the maximal time span T , an auxiliary
terminator reference is inserted into the temporal pool. Terminator references cause the
removal of the referenced subscription from the pool. The temporal terminator in figure
4.9(b) causes the removal of the subscription for client B at time t1+T, where t1 is the time
of the primitive event e1. After the match of the final contributing primitive event within the
composite subscription, a notification is sent to the client.

Primitive Event Pool

(a) Situation after occurrence of event e1 ∈ E1

Composite Event Pool Consumer Notification

e1

e2

(e1;e2)T

A

B

C

Primitive Event Pool

(b) Situation after occurrence of event e2 ∈ E2

Composite Event Pool Consumer Notification

e1

e2

(e1;e2)T

A

B

C

Primitive Event Pool

(c) Composite-event filtering

Composite Event Pool Consumer Notification

e1

e2

(e1;e2)T

A

B

C

Chapter 4. Event management and composition framework 47

Figure 4.9 Composite- event detection using single-step method

Using the single-step method, the notification about the composite does not suffer additional
delays due to additional filtering of binding predicates for the composition. Algorithm 4.2
shows the pseudo-code for the sequence detection using the single-step method.

Algorithm 4.2 Single-step detection of sequence (E1;E2)T

input: e – event-message to be filtered
S – subscription pool with currently observed subscriptions

output: notification about (E1;E2)T

1: initialize S with E1, (E1 ⇒ E2), and (E1 ⇒ T)
2: on event e
3: if (e ∈ E1) then
4: if (E2 ∉ S) then insert E2 in S
5: set reference r1 : (E2 ⇒ e)
6: insert t1 : (t(e) + T) in S with reference r2 : (t1 ⇒ E2)
7: if ((e ∈ E2) && (∃ reference r with (E2 ⇒ e))) then notify about (E1;E2)T

8: if (e = time event t1) then remove reference r1

9: if (no references from E2) then remove E2 from S
10: remove t1 from S

4.4 Conclusion

This chapter presented the proposed event management and composition framework for
building adaptive systems. We presented the general architecture for such a framework and
describe the component for event management and composition that it implements. The

Primitive Event Pool

(a) Situation after occurrence of event e1 ∈ E1 at time t1

Temporal Pool

Consumer Notification

e1

e2

(e2)T

A
B

C

Primitive Event Pool

(b) Situation after occurrence of event e2 ∈ E1

Temporal Pool

Consumer Notification

e1

e2

A

B

C

t1 t1+T

48 Chapter 4. Event management and composition framework

framework was defined around flexible and general models, each of which focuses on a
different design concern.

The framework nature allows to have a configurable infrastructure for personalized
systems, therefore the applicative logic of the system is separated from the event
management that the frameworks implements. The design of the models uncouples the
event modeling from the event management aspect.

The architecture of an event-based system was presented in order to show the functionality
of the event management and composition service. The event processing that the service
implements was described in terms of primitive and composite event filtering. We adopted
the single-step method for the filtering of composite events which integrates the detection of
composite events into the detection of primitive events, allowing accelerating the
identification of composite events and reducing the overall filtering time.

Therefore, the proposed framework is well suited for building adaptive systems. It provides
adaptability and expressiveness to event-based systems allowing the personalization of
event types, composition operators and the composition algorithm.

