
5
Event management

and composition system

This chapter presents the implementation of an event management and composition system.
The chapter is organized as follows: section 5.1 presents the Fractal component model that
we have chosen as a base for our event management and composition framework. Section
5.2 describes the basis for the design process of software systems in terms of fractal
components. This section presents the fractal architecture of an event-based system
constructed by the event management and composition framework. Section 5.3 presents the
facility management system adopted like validation system and the implementation
aspects. Seccion 5.4 presents the conclusions of this chapter.

5.1 Using Fractal

Fractal [Brun04] is a modular and extensible component model that can be used with
various programming languages to design, implement, deploy and reconfigure various
systems and applications, from operating systems to middleware platforms and to graphical
user interfaces.

It supports the definition of primitive and composite components, bindings between the
interfaces provided or required by these components, and hierarchic composition (including
sharing). Fractal is a run-time library which enables the specification and manipulation of
components and architectures. Fractal is highly dynamic and reflective because of its nature
as a run-time library.

50 Chapter 5. Event management and composition system

In practice, Fractal is presented as an API which can be used to create and manipulate
complex architectures using plain Java classes as building blocks. Its programmatic
approach makes it an ideal base to build tools on top of it.

Fractal distinguishes two kinds of components: primitives which contain the actual code,
and composites which are only used as a mechanism to deal with a group of components as a
whole, while potentially hiding some of the features of the subcomponents. Primitives are
simple, standard Java classes conforming to some coding conventions. Fractal does not
impose any limit on the levels of composition. Each Fractal component is made of two parts:
a controller which exposes the component interfaces, and a content which can be either a
user class in the case of a primitive or other components in the case of a composite. All
interactions between components pass through their controller.

The model thus provides two mechanisms to define the architecture of an application:
bindings between interfaces of components, and encapsulation of a group of components into
a composite. Because Fractal is fully dynamic and reflective (in the sense that components
and interfaces are first-class entities), applications built using it inherently support
structural reconfiguration. Fractal also supports component parameterization: if a
component can be configured using parameters, it should expose this feature as a Fractal
interface identified by a reserved name so that it is available in a standard way. More
information about Fractal, including the complete specification of the component model, and
several tutorials, can be found at http://fractal.objectweb.org.

5.2 Design

Before programming a component based software system with Fractal, one must first design
it with components and, in particular, identify the components to be implemented. The
component oriented design task is quite independent from the subsequent component
oriented programming task: at programming time, it is possible to merge several or even all
the design time components into a single, monolithic piece of code; but then the advantages
of component oriented programming, such as modularity and adaptability, are lost.

Some components in a component based application are dynamic, i.e. they can be created
and destroyed dynamically, while other components are static, i.e. their life time is equal to
the life time of the application itself. The dynamic components generally correspond to
datas, while the static ones generally correspond to services.

Therefore, in order to identify components in an application, it is easier to begin by
identifying the static components (the services that are used in the application). After the
services have been specified, the main data structures can be looked for, in order to identify
the dynamic components. After the components have been identified, the dependencies
between them must be founded, and they must be organized into composite components.

The services for event management and composition that the framework implements are:
event observation, filtering and notification. Then, the fractal components for managing the
event processing are: the Observer, the Filter and the Notifier components.

Chapter 5. Event management and composition system 51

Figure 5.1 presents the fractal component architecture of an event-based system. Remember
that the framework is instantiated and configured by the system programmer with respect
to the event types, the composition operators and the composition algorithm.

The architecture of the event-based system is defined by a composite component. This
component is conformed by the components for event management and composition that the
framework implements, and also by Producer and Consumer components.

The event-based system component provides interfaces for: the definition of events by
producers; the definition of subscriptions by consumers; the creation of the listener objects
(the event receptor and the subscription receptor/notifier); and starting producer, consumer
and observer components.

Figure 5.1 Fractal architecture of an event-based system

Observer

Filter

Notifier

Producer A Producer B

Consumer A Consumer B

Start Start

S
ta

rt

Start StartSubscriptionDef SubscriptionDef

EventDef EventDef

SubscriptionRN

SendSubscription SendNotification

SendEvent

E
v
e
n

tR

E
v
e
n

t-
b

a
se

d
 s

y
st

e
m

52 Chapter 5. Event management and composition system

All the components inside the event-based system component are composite components too.
Therefore, we describe each component in the following paragraphs.

The Producer component is composed by two components (figure 5.2(a)). The EventSender
component sends the event definition file to the event receptor. The Appl component (figure
5.2(b)) implements the functionality of the producer and then, it is conformed by Invoker
and ObjectInformation components, hence, events occur and are sent to the event receptor.

Figure 5.2 Producer components

The Observer component (figure 5.3) is composed by the EventR component and the Appl
component. The EventR component creates the event message receptor. The Appl
component receives the occurred events, verifies them with respect to the event definition
file and sends the allowed events to the filter.

StartEventDef

Appl

SendEvent

Invoker
Obj
Info

Appl

Producer

Invoke

SendEvent

Event
Sender

(a)

Start

(b)

Chapter 5. Event management and composition system 53

Figure 5.3 Observer components

The Filter component is composed by the Subscription , Operator, Algorithm, and
StoredEvents components. The Subscription component receives and stores the consumer
subscriptions to the system. Subscriptions are verified with respect to the operator
semantics defined at the Operator component. The Algorithm component receives the
occurred events and sends the events that match with the defined subscriptions to the
notifier. The occurred events are stored by the EventStore component.

Figure 5.4 Filter components

SendEvent

Filter

Subscription Algorithm

SendNotification

S
e
n

d
S

u
b

sc
ri

p
ti

o
n

Operator
Event
Store

VerifyS StoreEvent

Sub

Start

Observer

E
v
e
n

tR

EventR Appl

EventM

SubscriptionRN SendEvent

54 Chapter 5. Event management and composition system

The Notifier component is composed by the SubRNotS component which creates the
subscription receptor (or notification sender); and the Appl component which receives event
messages from the filter and send notification to consumers by the notification sender.

Figure 5.5 Notifier components

The Consumer component (figure 5.6) is composed by the SubSNotR which sends the
subscription definition file to the system. Event notifications are received at this component.
The Appl component implements the functionality of the consumer and receives the event
notifications received by the notification receiver.

Figure 5.6 Consumer components

5.3 Implementation

For the system implementation we adopt a facility management system for big buildings
that requires efficient integration of event information form different sources under various
or changing application requirements.

StartSubscriptionDef

ApplSubS
NotR

Consumer

Notification

SendNotification

Notifier

S
u

b
sc

ri
p

ti
o

n
R

N

SubR
NotS Appl

SubscriptionM

SendSubscription

NotificationM

Chapter 5. Event management and composition system 55

A facility management system is a distributed system for the remote monitoring and control
of multiple heterogeneous big buildings across the Internet from a single control center. The
component for event monitoring and notification is called surveillance system.

A surveillance system for several buildings monitors lighting, heating, air conditioning, sun
protection, and visitor movements. Various sensors are located within each of the monitored
buildings (figure 5.7).

Figure 5.7 Facility management system

Some sensors send status information on a regular basis to the system. Other sensors send
only critical events, i.e., if the status values cross a predefined threshold. A third group of
sensors passively collects data and is to be observed by the system. Sensors may also have
different reaction times and granularities.

For the tracking of visitor movements in a building several techniques may be employed
such as personalized badges for client wearing. The badges transmit a signal every few
seconds, the signal is received by widely deployed sensors throughout the building or
marked transmitter stations. An event source module can retrieve all badge sightings for all
clients. The event notification system can be used, for instance, to set alarm whenever
someone enters a restricted area of the building.

Several different applications may use the data from the event notification service: access
management, security, maintenance, energy management, laboratory safety, and budget
management. Each of these applications may use the data in different ways.

In multi-purpose buildings, the applications may change frequently. For example,
depending on the actual usage of multi-purpose buildings and rooms, the surveillance
system of a building covers certain subscriptions and events: for festive arrangements, the
guests security has to be ensured while for cultural exhibitions, strict environmental
conditions have to be maintained for the presented pieces of art. The following examples
show client subscriptions in a facility management system:

− Notify a technician if the air conditioning system fails for the third time.
− Notify service personnel if a sensor did not send data for more than half an hour.
− Notify a technician if in a certain room the temperature rises above 35ºC within a

time interval of 1 week length after a failure in the air conditioning system.

PRODUCERS CONSUMERS

EVENT
NOTIFICATION

SYSTEM

Event
Information

Consumer
Subscriptions

Event
Notifications

Technician

Security

56 Chapter 5. Event management and composition system

− Notify security personnel if a window is broken (during the night) and after this a
presence detector sends a signal.

Depending on the sensor type and the application, the technician has to be notified, for
example, about every occurrence of that event or just the first one. Similarly, for each of the
contributing events, different evaluation methods may have to be applied.

The architecture of the feature management system corresponds to the system architecture
presented in figure 5.1. The system implements sensors like event producers: air
conditioning, temperature, light. The consumers are represented as technician, security and
service personnel.

The feature management system was implemented using Julia, the reference
implementation of the Fractal component model in Java. The system uses the Java Message
Service (JMS) for asynchrnous communication. JMS is well suited to develop applications
that asynchronously send and receive data and events. Indeed, JMS supports both
messaging models: point-to-point (queuing) and publish/subscribe.

5.4 Conclusion

This chapter presented the implementation aspects for an event-based system. The system
implementation was defined using the Fractal component model. The system prototype was
conceived like a facility management system. The system implementation demonstrates
that the framework is a well suited infrastructure for building personalized systems which
require event management and composition.

